

Heart Failure Update 2021: How to fix a broken heart

Sheri L. Koshman BScPharm, PharmD, ACPR, FCSHP Associate Professor, Division of Cardiology, Faculty of Medicine and Dentistry <u>sheri.koshman@ualberta.ca</u>

@iheart_Rx

CSHP AB Feb 3, 2021

Presenter Disclosure

- Relationships with commercial interests:
 - Grants/Research Support: none
 - Speakers Bureau/Honoraria: Astra Zeneca, Novartis
 - Consulting Fees: Novartis
 - Other: none
- This presentation has received financial support from Novartis in the form of honorarium.
- Content and slides were created by Dr. Sheri Koshman independantly

Objectives

- By the end of this presentation, you should be able to:
 - Discuss an approach to HF management

5 year survival

https://www.cancer.ca/~/media/cancer.ca/CW/cancer%20information/cancer%20101/Canadian%20cancer%20statistics/Canadian-Cancer-Statistics-2019-EN.pdf?la=en

https://www.canada.ca/en/public-health/services/publications/diseases-conditions/report-heart-disease-Canada-2018.html

https://www.cihi.ca/en/hospital-stays-in-canada

Timeline of HFrEF Pharmacotherapy

	1980	1990	2000	2010	2020
Hydralazine/ ISDN	VHeFT I (1986)		A-HeFT (2004)		
ACEi/ARB	CONSENSUS (1987)	SOLVD (1991) VHeFT II (1991) SAVE (1992) SOLVD-P (1992)	Val-Heft (2001) CHARM (2003) VALIANT (2003)		
BB		Carvedilol (1996) Merit-HF (1999) CIBIS II (1999)	COPERNICUS (2001) COMET (2003)		
Digoxin		DIG (1997)			
MRA		RALES (1999)	EMPHASIS-HF (2003) EPHESUS (2003)		
Ivabradine			BEAUTIFUL (2008)	SHIFT (2010)	
Sacubitril / Valsartan				PARADIGM-HF (2014) PIONEER-HF (2019)	
SGLT2i					DAPA-HF (2020) EMPEROR Reduced (2021)

The HF GDMT Care Gap

Α

CENTRAL ILLUSTRATION Use and Dosing of Guideline-Directed Medical Therapy Among Patients With **Chronic HFrEF in Contemporary U.S. Outpatient Practice**

J Am Coll Cardiol 2018;72:351-66

Guideline Overview: 2017 CCS HF Guidelines

2020 Guidelines

- 8. New. We recommend SGLT2 inhibitors, such as dapagliflozin be used in patients with mild to moderate HF due to reduced LVEF ($\leq 40\%$) and concomitant type 2 diabetes, to improve symptoms and quality of life and to reduce the risk of hospitalization and cardiovascular mortality (Strong Recommendation, High-Quality Evidence).
- 9. New. We recommend SGLT2 inhibitors, such as dapagliflozin be used in patients with mild to moderate HF due to reduced LVEF ($\leq 40\%$) and without concomitant diabetes, to improve symptoms and quality of life and to reduce the risk of hospitalization and cardiovascular mortality (Conditional Recommendation, High-Quality Evidence).

Canadian Journal of Cardiology 2017 33, 1342-1433DOI: (10.1016/j.cjca.2017.08.022)

ىم

Stepped Approach Pitfall: Historical Precedent

- Precise sequence of clinical testing over 40 years
- Limitations
 - Assumes:
 - most effective / well tolerated drugs are developed first
 - Drug are only effective when titrated to target doses
 - Limited evidence to support significant value with target doses
 - Efficacy / safety of each class was tested on all background therapy at target doses

OH

McMurrray JJV et al. 10/1161/CIRCULATIONAHA.120.052926

Stepped Approach Pitfall: Complex Pathophysiology

Stepped Approach Pitfalls: Magnitude of treatment effects

- Overlooks:
 - Magnitude of treatment benefits are independent of each other
 - Magnitude of adding a class is likely larger than up-titrating an existing drug

McMurrray JJV et al. 10/1161/CIRCULATIONAHA.120.052926

MRA

No mineralocorticoid receptor antagonist

Mineralocorticoid receptor antagonist

PARADIGM-HF Secondary analysis Background therapy

Okumura N, et al. Circ Heart Failure 2016;9:e003212

	Dapagliflozin	Placebo		Hazard ratio (95% CI)	Interaction P value
Overall Effect (n=4744)	386/2373 (16.3%)	502/2371 (21.2%)		0.74 (0.65, 0.85)	
Diuretic					
Yes (n=4008)	358/2001 (17.9%)	457/2007 (22.8%)		0.76 (0.66, 0.87)	0.27
No (n=736)	28/372 (7.5%)	45/364 (12.4%)		0.57 (0.36, 0.92)	
MRA					
Yes (n=3370)	281/1696 (16.6%)	361/1674 (21.6%)	<u> </u>	0.74 (0.63, 0.87)	0.97
No (n=1374)	105/677 (15.5%)	141/697 (20.2%)		0.74 (0.57, 0.95)	
Digoxin					
Yes (n=887)	98/445 (22.0%)	111/442 (25.1%)		0.86 (0.66, 1.13)	0.21
No (n=3857)	288/1928 (14.9%)	391/1929 (20.3%)	<u></u>	0.71 (0.61, 0.83)	
ARNI					
Yes (n=508)	41/250 (16.4%)	56/258 (21.7%)		0.75 (0.50, 1.13)	1.00
No (n=4236)	345/2123 (16.3%)	446/2113 (21.1%)	_ → _	0.74 (0.65, 0.86)	
vabradine					
Yes (n=228)	24 /119 (20.2%)	29/109 (26.6%)		0.73 (0.42, 1.25)	0.94
No (n=4516)	362/2254 (16.1%)	473/2262 (20.9%)	<u> </u>	0.74 (0.65, 0.85)	
ACEi/ARB target dose					
<50% (n=2435)	199/1205 (16.5%)	254/1230 (20.7%)		0.78 (0.65, 0.94)	0.21
≥50% (n=1517)	109/794 (13.7%)	148/723 (20.5%)		0.64 (0.50, 0.82)	
Beta-blocker target dose					
<50% (n=2209)	189/1099 (17.2%)	255/1110 (23.0%)		0.71 (0.59, 0.86)	0.76
≥50% (n=2349)	172/1179 (14.6%)	227/1170 (19.4%)		0.74 (0.61, 0.90)	
MRA target dose			1.1.1		
<50% (n=417)	33/216 (15.3)	42/201 (20.9)		0.71 (0.45, 1.12)	0.82
≥50% (n=2953)	248/1480 (16.8)	319/1473 (21.7)		0.74 (0.63, 0.88)	
CDª					
Yes (n=1242)	114/622 (18.3%)	145/620 (23.4%)		0.77 (0.61, 0.99)	0.73
No (n=3502)	272/1751 (15.5%)	357/1751 (20.4%)		0.73 (0.63, 0.86)	
CRT		, ,			
Yes (n=354)	35/190 (18.4%)	36/164 (22.0%)		0.85 (0.53, 1.36)	0.58
· · · ·	251/21 02 (16 10/)	466/2207 (21 1%)		0 73 (0 64 0 84)	

DAPA-HF Post-hoc analysis Background therapy

Docherty K F et al. Eur Heat J 2020; 41:2379-92

Post-hoc: DAPA-HF Background Therapy

	Dapagliflozin	Placebo	Hazard ratio (95% CI) Interaction	n P value	
Overall Effect (n=4744)	386/2373 (16.3%)a	502/2371 (21.2%)	0.74 (0.65, 0.85)		
ACEi/ARB + beta-blocker + MRA					
Yes (n=2765)	220/1401 (15.7%)	285/1364 (20.9%)	0.72 (0.61, 0.86)		
No (n=1979)	166/972 (17.1%)	217/1007 (21.6%)	0.64	0.64	
ACEi/ARB ≥50% target dose + beta-blo	cker ≥50% target dose				
Yes (n=975)	67/523 (12.8%)	86/452 (19.0%)	0.66 (0.48, 0.91)		
No (n=3769)	319/1850 (17.2%)	416/1919 (21.7%)	0.40		
ACEi/ARB ≥50% target dose + beta-blo	cker ≥50% target dose + MRA				
Yes (n=711)	48/372 (12.9%)	62/339 (18.3%)	0.70 (0.48, 1.01)		
No (n=4033)	338/2001 (16.9%)	440/2032 (21.7%)	0.65	0.65	
ACEi/ARB ≥50% target dose + beta-blo	cker≥50% target dose + ICDª				
Yes (n=244)	16/134 (11.9%)	26/110 (23.6%)	0.50 (0.27, 0.94)		
No (n=4500)	370/2239(16.5%)	476/2261 (21.1%)	0.16		
ARNI + beta-blocker + MRA					
Yes (n=332)	23/161 (14.3%)	34/171 (19.9%)	0.70 (0.41, 1.19)		
No (n=4412)	363/2212 (16.4%)	468/2200 (21.3%)	0.86		
		0.25	0.50 0.75 1.00 1.25 1.50 Dapagliflozin better		
			<>		

Docherty K F et al. Eur Heat J 2020; 41:2379-92

Comprehensive vs. Conventional Treatment

Figure 1: Estimation of relative treatment effects of comprehensive disease-modifying pharmacological therapy on key cardiovascular events *Vaduganathan M, et al. Lancet 2020; 396:121-128*

Mean Event free survival

Mean Overall Survival

Vaduganathan M, et al. Lancet 2020; 396:121-128

Stepped Approach Pitfall: Proper sequencing may improve safety / tolerability

Figure 3. Time to Development of Severe Hyperkalemia (A) and Hyperkalemia (B) According to Mineralocorticoid Receptor Antagonist (MRA) Use at Baseline and Treatment Assignment

ENL indicates enalapril; and LCZ, sacubitril/valsartan.

Desai AS, et al. JAMA Cardiol 2017;2:79-85

Stepped Approach Pitfalls: Delayed time to initiation of effective classes

- CCS: 6 mos
- Trials: benefits as early as 1-3 mos

Stepped Approach Pitfalls:

- Time and energy is required fo up-titration
 - Sub-optimal utilization
 - Sub-optimal doses

Greene, S.J. et al. J Am Coll Cardiol. 2019;73(19):2365-83.

Principles and Pathophysiologic Targets of HFrEF Pharmacotherapy

5 PATHWAYS

Modulation of five pathways shown to improve outcomes in the general HFrEF population

> Angiotensin 2 Norepinephrine

> > Aldosterone

Neprilysin

SGLT

4 DRUGS

ARNI

May start with ACEi/ARB or ARNI in de novo. May use ACEi/ARB if cost or availability concerns.

Beta-blockers

Carvedilol, bisoprolol, metoprolol succinate

MRAs

SGLT2i Dapagliflozin, Empagliflozin **3 OTHERS**

Three additional pathways shown to improve outcomes in specific populations:

> Ivabradine NSR HR<u>></u>70 bpm

Hydralazine/nitrate Self identified blacks

> Vericiguat Worsening HF

Omecamtiv Mecarbil

Tolerability, availability, costs, patient preference, and other consideration may impact choices, doses, and sequences of therapies

but pharmaco-pathophysiologic rationale suggests that all attempts should be made to modulate all five pathways.

Lam C, Butler J. Circulation 2020; 142(12):1129-31

New Approach = flexibility = individualization

The "Cluster Approach"

- Grouping classes:
 - Foundational
 - rapid improvement in CV morbidity and mortality
 - applicable to most patients
 - synergistic/additive effects irrespective of background therapy
 - Personalized
 - select population
 - lack of improvement in mortality
- Application:
 - Prioritize foundational therapies prior to optimization
 - Cluster medications (maximize safety, rapid initiation)
 - In-hospital initiation
 - Use medication titration protocols with multidisciplinary teams (pharmacists, NP) +/remotely assisted titration

Miller RJ, Howlett JG, Fine NM. Canadian Journal of Cardiology (2021), doi: https://doi.org/10.1016/j.cjca.2020.12.028.

<u>Cluster Scheme</u>

Initiation and Titration of Foundational Therapy for Heart Failure with LVEF < 40%

Miller RJ, Howlett JG, Fine NM. Canadian Journal of Cardiology (2021), doi: https://doi.org/10.1016/j.cjca.2020.12.028.

McMurrray JJV et al. 10/1161/CIRCULATIONAHA.120.052926

Key Points

- HFrEF management is rapidly evolving
- New agents and their place in therapy require a new approach to increase application and save lives
- A multi-pathway approach should be prioritized over dose optimization
- Sequencing and optimization is flexible
- Focused early and efficient initiation will be key
- Barriers
 - Expertise / competency
 - Drug don't work in those that don't take them, especially with complex regimens
 - Universal access / coverage is necessary
 - Cost-effectiveness